non-abelian, soluble, monomial
Aliases: C32⋊Dic10, C5⋊PSU3(𝔽2), (C3×C15)⋊2Q8, C3⋊S3.3D10, C32⋊C4.2D5, C32⋊Dic5.2C2, (C5×C32⋊C4).2C2, (C5×C3⋊S3).6C22, SmallGroup(360,136)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C5×C3⋊S3 — C32⋊Dic10 |
C1 — C5 — C3×C15 — C5×C3⋊S3 — C32⋊Dic5 — C32⋊Dic10 |
C3×C15 — C5×C3⋊S3 — C32⋊Dic10 |
Generators and relations for C32⋊Dic10
G = < a,b,c,d | a3=b3=c20=1, d2=c10, ab=ba, cac-1=b, dad-1=ab-1, cbc-1=a-1, dbd-1=a-1b-1, dcd-1=c-1 >
Character table of C32⋊Dic10
class | 1 | 2 | 3 | 4A | 4B | 4C | 5A | 5B | 10A | 10B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | |
size | 1 | 9 | 8 | 18 | 90 | 90 | 2 | 2 | 18 | 18 | 8 | 8 | 8 | 8 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ6 | 2 | 2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ7 | 2 | 2 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ8 | 2 | 2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ10 | 2 | -2 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | symplectic lifted from Dic10, Schur index 2 |
ρ11 | 2 | -2 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | symplectic lifted from Dic10, Schur index 2 |
ρ12 | 2 | -2 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | symplectic lifted from Dic10, Schur index 2 |
ρ13 | 2 | -2 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | symplectic lifted from Dic10, Schur index 2 |
ρ14 | 8 | 0 | -1 | 0 | 0 | 0 | 8 | 8 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from PSU3(𝔽2) |
ρ15 | 8 | 0 | -1 | 0 | 0 | 0 | -2+2√5 | -2-2√5 | 0 | 0 | -2ζ53+ζ52 | -2ζ54+ζ5 | ζ54-2ζ5 | ζ53-2ζ52 | 0 | 0 | 0 | 0 | complex faithful |
ρ16 | 8 | 0 | -1 | 0 | 0 | 0 | -2-2√5 | -2+2√5 | 0 | 0 | -2ζ54+ζ5 | ζ53-2ζ52 | -2ζ53+ζ52 | ζ54-2ζ5 | 0 | 0 | 0 | 0 | complex faithful |
ρ17 | 8 | 0 | -1 | 0 | 0 | 0 | -2+2√5 | -2-2√5 | 0 | 0 | ζ53-2ζ52 | ζ54-2ζ5 | -2ζ54+ζ5 | -2ζ53+ζ52 | 0 | 0 | 0 | 0 | complex faithful |
ρ18 | 8 | 0 | -1 | 0 | 0 | 0 | -2-2√5 | -2+2√5 | 0 | 0 | ζ54-2ζ5 | -2ζ53+ζ52 | ζ53-2ζ52 | -2ζ54+ζ5 | 0 | 0 | 0 | 0 | complex faithful |
(1 42 32)(2 38 28)(3 34 44)(4 30 40)(5 26 36)(6 39 21)(7 45 12)(8 23 41)(9 14 27)(10 43 25)(11 29 16)(13 18 31)(15 33 20)(17 22 35)(19 37 24)
(1 37 27)(2 33 43)(3 29 39)(4 45 35)(5 41 31)(6 44 11)(7 22 40)(8 13 26)(9 42 24)(10 28 15)(12 17 30)(14 32 19)(16 21 34)(18 36 23)(20 25 38)
(1 2 3 4 5)(6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)
(2 5)(3 4)(6 45 16 35)(7 44 17 34)(8 43 18 33)(9 42 19 32)(10 41 20 31)(11 40 21 30)(12 39 22 29)(13 38 23 28)(14 37 24 27)(15 36 25 26)
G:=sub<Sym(45)| (1,42,32)(2,38,28)(3,34,44)(4,30,40)(5,26,36)(6,39,21)(7,45,12)(8,23,41)(9,14,27)(10,43,25)(11,29,16)(13,18,31)(15,33,20)(17,22,35)(19,37,24), (1,37,27)(2,33,43)(3,29,39)(4,45,35)(5,41,31)(6,44,11)(7,22,40)(8,13,26)(9,42,24)(10,28,15)(12,17,30)(14,32,19)(16,21,34)(18,36,23)(20,25,38), (1,2,3,4,5)(6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (2,5)(3,4)(6,45,16,35)(7,44,17,34)(8,43,18,33)(9,42,19,32)(10,41,20,31)(11,40,21,30)(12,39,22,29)(13,38,23,28)(14,37,24,27)(15,36,25,26)>;
G:=Group( (1,42,32)(2,38,28)(3,34,44)(4,30,40)(5,26,36)(6,39,21)(7,45,12)(8,23,41)(9,14,27)(10,43,25)(11,29,16)(13,18,31)(15,33,20)(17,22,35)(19,37,24), (1,37,27)(2,33,43)(3,29,39)(4,45,35)(5,41,31)(6,44,11)(7,22,40)(8,13,26)(9,42,24)(10,28,15)(12,17,30)(14,32,19)(16,21,34)(18,36,23)(20,25,38), (1,2,3,4,5)(6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45), (2,5)(3,4)(6,45,16,35)(7,44,17,34)(8,43,18,33)(9,42,19,32)(10,41,20,31)(11,40,21,30)(12,39,22,29)(13,38,23,28)(14,37,24,27)(15,36,25,26) );
G=PermutationGroup([[(1,42,32),(2,38,28),(3,34,44),(4,30,40),(5,26,36),(6,39,21),(7,45,12),(8,23,41),(9,14,27),(10,43,25),(11,29,16),(13,18,31),(15,33,20),(17,22,35),(19,37,24)], [(1,37,27),(2,33,43),(3,29,39),(4,45,35),(5,41,31),(6,44,11),(7,22,40),(8,13,26),(9,42,24),(10,28,15),(12,17,30),(14,32,19),(16,21,34),(18,36,23),(20,25,38)], [(1,2,3,4,5),(6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)], [(2,5),(3,4),(6,45,16,35),(7,44,17,34),(8,43,18,33),(9,42,19,32),(10,41,20,31),(11,40,21,30),(12,39,22,29),(13,38,23,28),(14,37,24,27),(15,36,25,26)]])
Matrix representation of C32⋊Dic10 ►in GL8(𝔽61)
1 | 0 | 0 | 0 | 0 | 26 | 11 | 0 |
0 | 1 | 0 | 0 | 0 | 35 | 26 | 0 |
0 | 0 | 0 | 0 | 0 | 60 | 0 | 1 |
0 | 0 | 41 | 1 | 0 | 41 | 0 | 20 |
0 | 0 | 1 | 0 | 1 | 51 | 37 | 60 |
27 | 51 | 60 | 0 | 60 | 59 | 0 | 0 |
11 | 59 | 3 | 0 | 3 | 0 | 59 | 0 |
27 | 51 | 51 | 37 | 60 | 60 | 0 | 60 |
1 | 0 | 26 | 11 | 0 | 0 | 0 | 0 |
0 | 1 | 35 | 26 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 1 | 0 | 0 | 0 |
31 | 29 | 58 | 59 | 58 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 41 | 0 | 0 | 41 | 1 | 20 |
0 | 0 | 0 | 0 | 1 | 52 | 37 | 60 |
17 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 59 | 3 | 0 | 3 | 0 | 60 | 0 |
38 | 37 | 52 | 0 | 52 | 1 | 44 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 17 | 0 | 0 | 0 | 0 |
11 | 59 | 47 | 9 | 3 | 20 | 60 | 41 |
17 | 44 | 0 | 0 | 0 | 0 | 0 | 0 |
60 | 44 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 26 | 9 | 24 | 0 | 9 | 24 | 1 |
26 | 0 | 14 | 51 | 0 | 14 | 51 | 58 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 1 | 52 | 37 | 60 |
30 | 32 | 0 | 1 | 20 | 47 | 10 | 3 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(8,GF(61))| [1,0,0,0,0,27,11,27,0,1,0,0,0,51,59,51,0,0,0,41,1,60,3,51,0,0,0,1,0,0,0,37,0,0,0,0,1,60,3,60,26,35,60,41,51,59,0,60,11,26,0,0,37,0,59,0,0,0,1,20,60,0,0,60],[1,0,0,31,0,0,0,0,0,1,0,29,0,0,0,0,26,35,60,58,60,60,41,0,11,26,0,59,0,0,0,0,0,0,1,58,0,0,0,1,0,0,0,0,0,0,41,52,0,0,0,0,0,0,1,37,0,0,0,0,0,1,20,60],[17,60,11,38,0,0,0,11,1,0,59,37,0,0,0,59,0,0,3,52,0,0,60,47,0,0,0,0,0,1,17,9,0,0,3,52,0,0,0,3,0,0,0,1,0,0,0,20,0,0,60,44,1,0,0,60,0,0,0,0,0,0,0,41],[17,60,15,26,0,0,30,0,44,44,26,0,0,0,32,0,0,0,9,14,0,1,0,1,0,0,24,51,0,0,1,0,0,0,0,0,0,1,20,0,0,0,9,14,0,52,47,0,0,0,24,51,0,37,10,0,0,0,1,58,1,60,3,0] >;
C32⋊Dic10 in GAP, Magma, Sage, TeX
C_3^2\rtimes {\rm Dic}_{10}
% in TeX
G:=Group("C3^2:Dic10");
// GroupNames label
G:=SmallGroup(360,136);
// by ID
G=gap.SmallGroup(360,136);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-5,24,73,31,963,585,111,964,130,376,10373]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^20=1,d^2=c^10,a*b=b*a,c*a*c^-1=b,d*a*d^-1=a*b^-1,c*b*c^-1=a^-1,d*b*d^-1=a^-1*b^-1,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊Dic10 in TeX
Character table of C32⋊Dic10 in TeX